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Abstract—Energy-efficiency is a key concern in mobile sensing
applications, such as those for tracking social interactions or
physical activities. An attractive approach to saving energy is
to shape the workload of the system by artificially introducing
delays so that the workload would require less energy to
process. However, adding delays to save energy may have a
detrimental impact on user experience. To address this problem,
we present Gratis, a novel paradigm for incorporating workload
shaping energy optimizations in mobile sensing applications in
an automated manner. Gratis adopts stream programs as a high-
level abstraction whose execution is coordinated using an explicit
power management policy. We present an expressive coordi-
nation language that can specify a broad range of workload-
shaping optimizations. A unique property of the proposed power
management policies is that they have predictable performance,
which can be estimated at compile time, in a computationally
efficient manner, from a small number of measurements. We
have developed a simulator that can predict the energy with an
average error of 7% and delay with an average error of 15%,
even when applications have variable workloads. The simulator
is scalable: hours of real-world traces can be simulated in a few
seconds. Building on the simulator’s accuracy and scalability, we
have developed tools for configuring power management policies
automatically. We have evaluated Gratis by developing two
mobile applications and optimizing their energy consumption.
For example, an application that tracks social interactions using
speaker-identification techniques can run for only 7 hours without
energy optimizations. However, when Gratis employs batching,
scheduled concurrency, and adaptive sensing, the battery lifetime
can be extended to 45 hours when the end-to-end deadline is one
minute. These results demonstrate the efficacy of our approach
to reduce energy consumption in mobile sensing applications.

Keywords-Mobile applications, energy efficiency, programming,
performance modeling

I. INTRODUCTION

Mobile sensing applications (MSAs) are an emerging class

of mobile applications (apps henceforth) that make inferences

based on sensor data to provide users with advanced features

and customization. For example, Moves uses motion sensors to

recognize when a user is walking, cycling, or running to create

a fine-grained record of their physical activities [1]. Similarly,

Sociophone uses microphones to track face-to-face interactions

and identify close social relations [2]. Unfortunately, MSAs

can significantly reduce the battery life of a mobile phone

due to their continuous operation and use of power-hungry

resources such as cellular radio, Wi-Fi, GPS, or microphone.

Developers must, therefore, implement complex application-

level power management (PM) policies that coordinate the use

of hardware resources to minimize energy consumption.

Best software engineering practice suggests focusing first

on the functional aspects of an MSA and then refactor it to

address performance concerns. Ideally, a developer should be

able to incorporate a wide range of PM policies easily and

evaluate their performance trade-offs. Today, such transfor-

mations are applied manually, and their impact is evaluated

through extensive and time-consuming tests. To illustrate some

of the challenges associated with this approach, consider an

app that tracks a user’s social interactions using speaker-

identification techniques. The app collects audio samples,

extracts features from these samples, saves them locally, and

uploads them to an edge service determine the identity of

speakers. A strategy that a developer may employ is to

batch packets to improve the energy efficiency of wireless

communication. However, network communication may occur

at multiple locations in the app. Aside from having to apply the

transformation at each location, it is possible that the transfor-

mation may introduce concurrency bugs that are challenging

to debug when the uploads use multiple synchronizing threads.

The underlying problem is that Android apps are difficult to

refactor as they do not cleanly separate the functional aspects

of the app from its concurrency and PM. Next, the developer

has to perform several tests to quantify the impact that the

batch size parameter has on the energy consumed and timeli-

ness of data uploads. This step involves deploying the app and

measuring its performance using different batch sizes under

diverse operating conditions. As the PM policies increase

in complexity, this approach becomes increasingly prone to

errors, and the problem of configuring the parameters of a

PM policy grows combinatorially with each new parameter.

The central contribution of this paper is Gratis — a novel

programming paradigm that (1) simplifies the introduction

of PM policies and (2) automates the configuration of PM

policies. In this paper, we focus on workload shaping energy
optimizations, a class of optimizations that save energy by

controlling when hardware resources are used. Workload-

shaping optimizations leverage that most of the operations

performed by an MSA, including data collection, inference,

and synchronization with remote services, are delay tolerant.

Accordingly, we can save significant energy by introducing

delays to increase the workload of the system artificially

to allow the hardware to operate more efficiently. However,

adding delays can negatively impact the user experience.
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Therefore, our goal is to develop policies that reduce energy
consumption under soft end-to-end deadlines that control the

impact of energy optimizations on user experience.

Our approach builds on the insight that we must provide a

clean separation between the functional aspects of an app and

its run-time behavior to simplify the introduction of PM poli-

cies. We propose a novel programming model that combines a

stream programming abstraction with PM policy that controls

an app’s execution. It is common to use stream programs to

specify MSAs (e.g., [3]–[5]). However, in contrast to existing

systems that execute components as soon as possible, the PM

policy explicitly control the execution of an app. We have

developed a coordination language for specifying parametric

PM policies that control when components are used and their

concurrency. PM decisions can be made based on the number

of data frames in the queues of components or the time

until the deadline of a data frame expires. The developed

language is sufficiently expressive to specify a wide range of

workload-shaping optimizations including batching, scheduled

concurrency, and adaptive sensing. The benefit of our approach

is that it enables a developer to specify sophisticated PM

policies without having to modify an app’s code.

A key challenge to writing effective PM policies is that

their parameters must be configured to interactions of the app

with its environment. Manually configuring the parameters of a

policy is particularly challenging since there are many possible

configurations, each having a different energy consumption

and timeliness tradeoffs. We developed techniques to automat-

ically configure parameterized policies into concrete policies

where each parameter is assigned a fixed value. Central to

our techniques is a specialized simulator that can estimate the

energy consumption and delays of an app in a data-driven

manner based on a set of traces collected in a diverse set of

environments. The simulator is built on the insight that MSAs

have composable performance, i.e., the delay and energy

consumption of the entire app can be estimated accurately

from performance profiles of its components. This insight

allows us to build a simulator that is highly scalable and

accurate even in when the app has dynamic workloads. Lever-

aging the simulator’s scalability, we use standard optimization

techniques (i.e., gradient descent and grid search) to instantiate

PM policies. In combination, the new programming model and

associated policy instantiation techniques, allow a developer to

write PM policy iteratively, configure their parameters, and

estimate the energy-delay trade-offs of PM policy without

having to deploy an app.

We have evaluated Gratis by implementing two MSAs for

speaker identification (SI) and activity recognition (AR). We

demonstrate the expressiveness of our coordination language

by implementing workload shaping optimization that com-

bines batching, scheduled concurrency, and adaptive sensing.

Workload shaping policies can effectively reduce energy con-

sumption. For example, the battery of a phone running the SI
app lasts for only 7 hours when audio data is processed as

soon as possible. In contrast, if the user is willing to tolerate

a 60-second latency, the battery life is extended to 19 hours, a

2.7 times improvement. Adaptive sensing, which collects audio

only when speech is detected, extends the battery life to 45

hours. The AR app shows similar trends. We have extensively

evaluated the accuracy of the app simulator under a wide range

of configurations. Our results show the average prediction

errors for energy and delay are 7% and 15%, respectively.

These results demonstrate the effectiveness of incorporating

workload shaping-optimizations in MSAs automatically.

II. PROBLEM FORMULATION

Workload shaping energy optimizations save significant

energy by adding delays to shape the workload of an MSA.

However, the amount of delay that may be added must be

carefully controlled to ensure that it does not negatively

impact the user experience. Through an example, we will

illustrate workload shaping energy optimizations, introduce

our PM specification language informally, and discuss the

challenges of estimating the performance of PM policies. We

will formalize these concepts in Section III.

Parametric PM Policies: Consider that a developer wants to

minimize the energy consumption of the speaker identification

(SI) app subject to the constraint that the data is uploaded

to an edge service within 10 minutes. She implements the

SI app as a graph of components that are responsible for

collecting audio frames, extracting features from frames, and

uploading them to the cloud service to determine the identity

of speakers (see Figure 1a). She may incorporate a PM policy

parametrized by the batch size (th1) to improve energy effi-

ciency by batching the writing of data to flash and its wireless

transmissions. Additional energy may be saved using schedule
concurrency which controls the concurrency of writing to flash

and transmitting packets. The net effect of this optimization

is that it consolidates periods of activity and sleep allowing

the device to exploit deeper sleep states. Our insight is that

this PM policy can be specified at the level of the stream

graph by controlling when the app’s components start their

execution. The code of the PM policy can be specified and

refined separately from the code of the app. We ensure that

PM policies do not introduce concurrency bugs by enforcing

that PM decisions to start a component depend only on local

data associated with that component. This “correct-by-design”

approach side-steps the difficulty of reasoning about the cor-

rectness of PM transformations in generic Android apps that

extensively use multi-threaded and event-driven programming.

We developed a simple but expressive language for spec-

ifying parametric policies. The PM policy that integrates

batching and scheduled concurrency which are two examples

of workload-shaping optimizations (see Figure 1b). The basic

primitives of the proposed language are events, handlers,

and commands. The policy is executed in an event-driven

manner as follows. When the Android framework reads 256

audio samples, Gratis inserts the frame containing the samples

in the input queue of the audio component and calls the

available(audio) handler. The available(audio)
handler triggers the execution of the audio component. When

its execution is completed, the post(audio) handler starts
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(a) The basic SI app collects audio data (audio), extracts features
(feature_extraction) from the samples, and uploads (upload) them
to a remote server and saves them locally (todisk). The numbers indicate
how many samples are produced/consumed by each component.

1: E = { deadline : 10 min, th1 : 2 }
2: available(audio):
3: execute(audio)
4: post(audio):
5: execute(feature_extraction)
6: post(feature_extraction):
7: if feature_extraction.num_output ≥ th1:
8: execute(upload)
9: execute(todisk)

(b) A PM policy that incorporates batching and scheduled concurrency.

available(audio)
pre(audio)

audio

feature extraction (fe)

upload

todisk

Audio

CPU

Net

Disk

available(audio)
pre(audio)

post(upload)

post(todisk)

post(audio)
pre(fe)

post(fe)

post(audio)
pre(fe)

post(fe)
pre(upload)
pre(to disk)

(c) Timeline of events generated using policy in Figure 1b. The amount
resources uses for each component is shown.

Fig. 1. The basic version of the SI app that implements batching and
scheduled concurrency.

the execution of the feature_extraction component. A

typical pattern in Gratis policies is to trigger the execution

of descendant components to be executed in a post()
handler. This pattern occurs when components are executed

sequentially. The post(feature_extraction) handler

has two important aspects. First, the execution of upload
and todisk is guarded by an if-statement. The consequent

instructions are executed only when the number of frames

in the output queue of the feature_extraction exceeds

th1 = 2. By configuring th1, we can control the batching for

the network (used by the upload component) and disk (used

by the todisk component) in a data-driven manner based

on the amount of data available in the queue of components.

Second, the upload and todisk are scheduled to start

concurrently. It is important to note that Gratis provides

only coarse-grained control over resource usage. Gratis only

controls when a thread becomes ready to be scheduled and not

the precise interleaving of the threads. The operating system

schedules the threads, sends packets, and stores data to disk.

Timing Semantics: An important consideration is how to cap-

ture timing in our system. In Gratis, we maintain a timestamp

associated with each data frame1. When a component executes,

it consumes some data frames from its input and produces

some output samples. The output samples are timestamped

1We opt against maintaining a timestamp for each sample as it introduces
a significant overhead.

with the minimum of the timestamps of the consumed samples.

The end-to-end latency is the maximum difference between

the time when a sample was produced until it was consumed.

The introduction of delays will artificially increase the end-to-

end latency. The developer constrains the end-to-end latency

and bounds the impact on the user experience by specifying a

soft end-to-end deadline. The end-to-end deadline is specified

by setting the value of the global deadline variable in the

environment (see line 1 in Figure 1b).

Policy Instantiation: A unique property of the considered

energy optimizations is that they provide predictable perfor-

mance, i.e., their performance can be determined at compile

time. It is difficult to automatically determine the impact

that a PM policy on an Android app as it is challenging

to determine the dependencies between components, their

concurrency, and use of hardware resources from Java code. In

contrast to generic Android apps, a unique property of Gratis

apps is that they have composable performance: the overall

performance of the app can be determined from the energy

and delay profiles of its components. This property holds

for two reasons. First, the stream program explicitly captures

the dependencies between components, the number of frames

consumed/produced, and we enforce that each component uses

a single hardware resource. Second, the PM policies explicitly

control the timing, the concurrency, and the amount of data

processed by a component. As a result, a trace-driven simulator

can determine when components are executed and the overlap

in the use of hardware resources. If some components use the

same hardware resource, they should use that resource in a fair

manner (consistent with the behavior of the Linux scheduler).

In contrast, if components use different hardware resources,

they are executed concurrently. The simulator estimates the

energy and delay based on the deterministic sequence of events

generated by the PM policy (such as the sequence of events

shown in Figure 1c).

III. DESIGN

Gratis provides an intuitive and practical approach for spec-

ifying, evaluating, and configuring PM policies that implement

workload shaping energy optimizations. Gratis allows develop-

ers to specify MSAs and their PM policies. A developer writes

an app in the StreamIt programming language [6]. The stream

program provides an implementation for each component and

explicitly captures their dependencies and resource usage. We

provide a coordination language for specifying a parametric

PM policy that controls the execution of components at run-

time. PM decisions are made either in a data-driven manner

(based on the number of frames in the queue of a component)

or in a time-driven manner (based on the time remaining until

the deadline of a frame expires). The developers can refine the

code and PM policies of an app independently.

The Gratis toolkit includes three components: a policy

configuration tool, a translator, and a run-time scheduler. The

policy configuration tool is used to determine concrete values

for each parameter of a PM policy such that energy consump-

tion is minimized and the end-to-end deadline constraints are

179



Parametric 
policy

Stream graph

Policy 
configuration

Simulator
Concrete 

policy

John

Scheduler
(Concrete 

policy)

Java 
code

Android Service

Translator

Performance
profile

Traces

Fig. 2. A developer specifies an MSA as a stream graph and coordinates using
a parametric policy. The policy configuration tool determines the concrete
values for each parameter of a policy. A translator generates an Android
service based on the stream graph and concrete policy.

satisfied. The tool proposes new concrete policies using either

grid search or gradient descent techniques. The performance

of each concrete policy is evaluated using a simulator based

on the performance profile of components and previously

collected traces. The translator includes a source-to-source

compiler that translates the StremIt code in an Android service.

Additionally, the translator generates an intermediary represen-

tation for a PM policy that can be executed by a scheduler a

run-time. The scheduler enforces a concrete policy at run-time

and manages the interactions with the Android framework.

The remainder of this section discusses the language support,

policy configuration, and translation, respectively.

A. Gratis Programming Model

The Gratis provides support to express MSAs as stream

programs and control their behavior using a PM policy. Next,

we formalize both aspects of the programming model.

1) Stream Programs: An app is structured as a graph

of components2 that are connected using FIFO queues. A

component is the basic unit of a stream program. During its

execution, a component reads frames from its input queue,

performs computations based on the read data along with its

internal states, and produces frames inserted into the output

queue. A traditional synchronous dataflow model requires that

a component produces and consumes the same number of

frames in all its executions [7]. Gratis allows components to

produce and consume a variable amount of data.

The key novelty of Gratis and the aspect where our work

departs from previous work on dataflows is its model of

computation. A traditional dataflow system assumes that input

data is always available to be processed and the system should

process the data as soon as possible. Therefore, in such

systems, the primary concern is to manage the CPU efficiently

to maximize the overall throughput. In sharp contrast, Gratis

PM policy introduces delays to create workloads that may

be processed more efficiently. Additionally, Gratis coordinates

multiple hardware resources to achieve the desired energy-

delay tradeoff.

2In StreamIt terminology, a component is called a filter. In this paper, we opt
for the more general term of component since the proposed PM methodology
readily extends to other stream programming systems.

2) Policy Specification: The policy language controls when

components are executed using four constructs: events, han-

dlers, guarded commands, and an environment.

Events and Handlers: Gratis may generate and handle

three types of events: data available, execution, and timeout.

The app’s scheduler registers to be notified when data is

available either from a sensor or a socket. The scheduler

identifies the components that are interested in receiving

this data, inserts it in their input queues, and calls their

available() handlers. The available event is the

only event triggered externally by the underlying Android

framework. The execution and timeout events are generated

internally by Gratis . Gratis generates a pre(A) event before

starting the execution of a component A and a post(A)
event after completing A’s execution. The timeout events are

generated when the minimum slack of the frames in a queue

falls below a configured threshold. Note that each handler is

associated with a unique component called the handler owner.

Commands: The logic of a PM policy is implemented

using guarded commands. The event handler contains a se-

quence of guarded commands. Gratis has two commands:

unsubscribe and execute. A source component sub-

scribes to receive data from sensors or a socket during its

initialization. The unsubscribe(A, d) command stops

the reception of these events by A for d seconds. This allows

the device to sleep. The execute(A) command triggers the

execution of A when there are sufficient frames in A’s input

queue to execute at least once. After A starts executing, it

may execute multiple times until the number of frames in its

input is less than A’s consumption rate. The execute(A)
command is idempotent, i.e., if A is already executing, the

command has no effect. If multiple execute() commands

are issued within the same handler (as it the case in lines 8 – 9

of Figure 1b), the components will be executed concurrently.

Commands may be guarded by conditional expressions that

involve properties computed based on the states of a com-

ponent’s queues. Gratis exposes the number of frames in the

input and output queues as num_input and num_output.

Additionally, Gratis also exposes the minimum of the slack

for the data frames in the input queues as input_slack.

The execution of a component may be triggered in a data-

driven manner when the number of frames exceeds a threshold.

Alternatively, the execution of a component may be triggered

in a time-driven manner when the minimum slack falls below a

threshold. This case is handled using the timeout event handler

timeout(A, t) when the value of input_slack of A
falls below t seconds.

We limit both the scope and the complexity of the con-

ditional expressions. An expression can only refer to data

associated with the handler owner or in the global environment

(described below). By forcing that components make decisions

on local data, we avoid the potential of writing policies that

may introduce concurrency bugs. Additionally, we limit the

complexity of the boolean expressions to only include the

variables described above. This ensures that a PM policy can

be executed efficiently at run-time.
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(a) The app collects audio data (audio), determines whether the audio
includes speech (vad), extracts features (feature_extraction) from the
samples that include speech, and uploads (upload) to a remote server and
saves them locally (todisk). The numbers indicate how many samples are
produced/consumed by a component. A * indicates that the rates are variable.

1: E = { deadline : 10 min, th1 : 2, th2 : 30 sec,
th3 : 1024, sleep duration : 10 sec }

2: available(audio):
3: execute(audio)
4: post(audio):
5: execute(vad)
6: post(vad):
7: unsubscribe(audio, sleep_duration)
8: if vad.num_output ≥ th1:
9: execute(feature_extraction)
10: timeout(feature_extraction, th2):
11: execute(feature_extraction)
12: post(feature_extraction):
13: if feature_extraction.num_output ≥ th3:
14: execute(upload)
15: execute(todisk)

(b) A PM policy that incorporates batching, scheduled concurrency, and
adaptive sensing optimizations.

Fig. 3. The advanced version of the SI app that implements batching,
scheduled concurrency, and adaptive sensing.

Environment: The app interacts with the PM policy

through its execution environment. An execution environment

is a dictionary that maintains the policy parameters. The policy

parameters can be used as part of the guarded commands.

By default, the dictionary includes the deadline variable,

which specifies the end-to-end deadline. We provide a simple

interface to allow the values of the variables to be read and

modified from the StreamIt code.

Example: In Figure 1b, we present a PM policy that saves

energy by combining batching and scheduled concurrency.

Next, we consider how additional energy may be saved using

adaptive sensing (see Figure 3a). One of the challenges to

supporting adaptive sensing in Gratis is that it introduces

workload dynamics. A vad execution may generate either a

frame containing speech data or no data. When the workload

is dynamic, it is unclear what is the best strategy to configure

the policy parameters. We may use small values for the th1

and th3 that control batching to ensure that even when the vad
generates little data, the app will process it. However, this may

not be energy efficient. Increasing th1 and th3 shall improve

energy efficiency but could also cause a longer processing

delay. Deadlines may be missed if the vad does not produce

sufficient data to increase the number of frames in the queues

of vad and feature_extraction components beyond

th1 and th3 respectively. A better approach to handling this

situation is to use a timeout handler. The timeout handler

can be used to trigger the execution of the app based when the

slack falls below a threshold. In our example, the execution

is triggered when the minimum slack of the frames in the

input queue of feature_extraction falls below th2 =

30 sec. The policy shows how our coordination language can

be used to express a policy that combines batching, scheduled

concurrency, and adaptive sensing.

B. Evaluating PM Policies

An important feature of the considered energy optimiza-

tions is that they have predictable performance that can be

determined at compile time. Next, we will develop tech-

niques that assess the performance of a concrete policy in

a computationally efficient manner using a small number

of measurements. Our solution involves three steps: (1) the

app is partitioned into multiple domains that are executed

by independent threads, (2) a domain profiler constructs a

performance profile for each domain, and (3) the simulator

estimates the overall performance of the app based on the

performance profiles and a set of traces. The set of traces

capture all the interactions of the app with the environment by

recording the timing and content of the available events.

Since the PM policies are deterministic, this information is

sufficient to replay the complete behavior of an app in a

deterministic manner. Additionally, we assume that the MSA

works in the background with minimal interference from other

apps. Large-scale user studies support this observation [8].

Domain Partitioning: A naive approach to implementing

PM policies is to have each component operate in a different

thread. However, this method would incur significant overhead

since the app would include many threads whose execution

must be synchronized. To address these issues, we partition

the app into domains such that all components that pertain to

a domain use the same hardware resource. The components

partitioned into the same domain are executed in the same

thread. The constraint that all components of a domain use the

same hardware resources ensures that the hardware resources

can be controlled by starting/stopping the domains.

Domain Profiler: To create accurate performance profiles,

we must address the following challenges: hardware resources

have different energy/delay characteristics, and the resource

usage of a domain may depend on its input. We address these

challenges by performing measurements in which we control

three parameters: batching, interim time, and data content. The

batching parameter controls the amount of data that a domain

to processes in an execution. The interim time controls the time

between consecutive batch executions. The values of the inputs

must be selected carefully when profiling dynamic domains.

The compiler generates code to track the execution time of

a domain. We measure energy consumption using a power

meter.

The delay of components typically scales linearly with the

workload regardless of the type of hardware resource used.

In contrast, the energy consumed by a domain may scale

linearly or non-linearly with the workload. For example, the

energy consumed by the feature_extraction domain,

which uses the CPU, scales linearly with the workload (see

Figure 4b). For domains that use linear-scaling resources, it

is sufficient to profile them with different batch sizes using

a fixed interim value. Figure 4b shows that changes in the
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(a) audio + vad (b) feature_extraction
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Fig. 4. Energy consumption for a subset of domains of the SI app evaluated
in Section IV.

interim have little impact on the energy consumed by the

feature_extraction. In contrast, the energy consumed

by network interfaces (e.g., Wi-Fi or cellular) scales non-

linearly with the workload. For domains that use non-linear-

scaling resources, we profile them with different batching and
interim values. The reason why energy scales non-linearly is

because the hardware resource remains in a high-power state

for a while after its last usage [9]. For example, the energy

consumed by upload varies significantly with the interim

time as shown in Figure 4c. However, for a fixed interim,

the energy consumed by upload can be approximated by a

function that scales linearly with the workload.

The domains of a stream program may be either static or

dynamic. The resources usage of a static domain depends only

on the number of frames its processes and is independent of

its input values. For example, computing audio features or

uploading them introduce similar resource usage regardless of

the values of the samples in frames. Empirical studies have

shown that a majority of stream programs are composed of

only static components. Additionally, even in stream programs

that are dynamic, the majority of their components are static

[10]. This is also the case for the AR and SI apps. It is

sufficient to evaluate the performance of static domains can

be evaluated using dummy data.

The input used to profile dynamic domains must be carefully

selected to obtain an accurate profile. For example, the only

dynamic domain in the SI app is the domain that includes

the audio and the vad components. The performance of

the domain may be divided into two clusters depending on

whether speech is detected: the audio frames that contain

no speech are dropped while those take contain speech are

further processed to extract features. For each cluster, we

create different performance profiles with different interim

values. In our current implementation, the developer manually

specifies the how tests pertaining to each cluster are generated.

In the future, we will investigate automating this process.

As part of the app simulation, we must evaluate the execu-

tion time and energy consumption of domains for configura-

tions for which we do not have direct measurements. Consider

the case when the simulator wants to estimate the energy

consumption of a domain given the state of its the input queue

and the time from its previous invocation. We first compute

the resource utilization for each frame in the input queue to

determine the most frequent input cluster. We will use the

performance measurements associated with the most frequent

cluster to estimate the energy consumption. For each cluster,

there are performance measurements for different batch and

interims values. The time from the previous invocation is used

as the interim in the performance profile. Referring to Figure

4c, when the is interim i = 620, we generate a dataset that

approximates the behavior of the system at this interim based

on the data collected for interims 512 and 1024 using linear

interpolation. Then, the energy is estimated by fitting a linear

function and evaluated given the number of frames in the

component’s queue.

App Simulator: The performance of the app is determined

by simulating it in an event-driven manner according to its PM

policy (see Algorithm 1). The input to the simulator is the trace

of available events that are initially loaded into the queue

of the simulator. The simulator estimates the delay via the Δ
data structure. In response to an event, the simulator will call

the policy_handler to execute the instructions associated

with that event in the policy. If the guard of the instruction

holds, a pre execution event will be inserted in the queue to

be processed next. It is easy to ascertain whether the guard

is true since guards are simple boolean expressions involving

properties associated with the queues of a component. The

pre(d) event indicates that domain d may be executed when

there is sufficient data in its queue for at least one execution.

If this is the case, the domain will be added to the ready
data structure.

The ready data structure is a dictionary that maintains

a mapping from hardware resources to a list of domains

that are in execution. The core of the simulator is the

sim_execution function that simulates the execution of

the ready domains. The function executes the ready domains

either until one is finished or until the time when the next

event in the app will occur (provided as the next event

argument). Domains that use different resources are executed

concurrently. In contrast, domains that use the same resource

must share it in a fair manner. This is accomplished by cycling

through the domains that are ready for a given resource using

the next_domain function of the ready data structure.

The execution of the domains in a fair manner approximates

the behavior of the Linux kernel that implements a form of

weighted fair queueing [11]. The result of the simulation is a

timeline of when each domain starts and finishes executing.

The energy consumption is evaluated at the completion of the

simulation using the generated timeline.

Example: To clarify the behavior of the simulator, consider
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1: time = 0
2: queue = the trace of available events and the associated data
3: ready = a mapping from hardware resources to domains that use that

resource and are ready to run
4: Δ(d, data, num frames) = latency for domain d and input data
5: while time < sim time do
6: (time, event, data) = queue.pop()
7: switch event do
8: case sample: do
9: policy handler(time, event, data, queue)

10: case pre(d): do
11: policy handler(time, event, data, queue)
12: if d.num_input ≥ d.min_input then
13: ready[d.resource()].append(d)
14: d.duration = Δ(d, d.input, d.num input)
15: d.data = data

16: case post(d): do
17: policy handler(time, event, data, queue)

18: sim execution(ready, time, queue.peek().time, queue)

19: Procedure policy handler(time, event, data, queue)
// Execute the instructions of the handler associated with the

event
20: for instr in handler(event) do
21: if instr.guard() then
22: queue.schedule(time, pre(instr.target), data)

23: Procedure sim execution(ready, time, next event, queue)
// Execute the domains that are ready such that domains using

different resources run independently and those sharing
resources use them fairly

24: tick = 5 ms
25: new event = False
26: while (time ≤ next event) and (new event = False) do
27: for resource in ready do
28: d = ready[resource].next domain()
29: d.duration -= tick
30: d.num input -= d.input(d.data)
31: d.num output += d.output(d.data)
32: if domain.duration ≤ 0 then
33: new event = True
34: ready.remove(d)
35: queue.schedule(time, post(finished), None)

36: time = time + tick

Algorithm 1: Pseudo-code for the app simulator. The output of the

simulation is used to assess the energy consumption and the end-to-end

delay.

the case when two domains, Domain 1 and Domain 2, require

the CPU for 10 ms and 15 ms respectively. An additional

domain, Domain 3, requires the network for 7 ms (see Figure

5). Since the network and the CPU resources are independent,

the execution of the Domain 1 along with Domain 2, and

Domain 3 is concurrent. As a result, Domain 3 finishes after

7ms. In contrast, Domain 1 and Domain 2 uses the same

resource. Accordingly, they must alternate using the CPU to

share the CPU fairly. The Domain 1 and Domain 2 share the

CPU for 15 ms until Domain 1 finishes executing. Domain

2 continues to execute for another 10 ms until it finishes.

Technically, Domain 3 execution still uses the CPU but the

time is relatively shorter than CPU domains (< 5 ms). The

actual network transfer may happen later with some delay after

Domain 1 (CPU)

Domain 2 (CPU)

Domain 3 (Net)

0 5 2010 15 25 30

Fig. 5. Simulation of three domains. Domain 1 and 2 use the CPU and have
delays of 10 and 20, respectively. Domain 3 uses the network. Domains 1-2
and domain 3 execute in parallel since they use different hardware resources.
Domains 1 and 2 use the CPU fairly.

Domain 3 completes its execution. Therefore, the execution of

Domain 3 essentially makes I/O requests to the OS. We ignore

the tiny amount of CPU sharing to simplify the simulation

while still capturing precise execution interims.

C. Configuring PM Policies

The PM policy language that we have developed can express

a broad range of workload shaping energy optimizations.

However, it does not address the problem of configuring the

parameters of a PM policy. The policy parameters have a

significant impact on the performance of an app and deter-

mine the amount of energy that may be saved. To overcome

this challenge, we have developed a tool for automatically

configuring a PM policy.

The input to the configuration tool is a parametric policy.

The configuration tool starts by analyzing the policy and

classifying its parameters as controlling either data-driven or

time-driven parameter. A data-driven parameter makes PM

decisions based on the state of the queue. We identify the

batching parameters by inspecting the guards of the execute
commands. In contrast, time-driven parameters control the

timeouts, which are essential for handling dynamic workloads.

We identify the timeout parameters by inspecting the second

argument of the timeout handler.

The overall strategy to configure the policy parameters is

to first configure the data-driven parameters and then the

time-driven parameters. We have developed two configuration

approaches that build on grid search and gradient descent,

respectively. The grid search exhaustively iterates over all

possible batching configurations using a grid of possible values

for each batch parameter. As we consider each configuration,

we maintain the solution that provides the minimum energy

consumption and meets the end-to-end deadline. For each

batching configuration, we use the simulator to determine its

energy consumption and the maximum end-to-end latency.

If the maximum end-to-end latency of the considered con-

figuration is within the end-to-end deadline and the energy

consumption is the best solution evaluated thus far, we update

the best solution with this configuration. If the maximum end-

to-end latency exceeds the deadline, it may be possible to

reduce the latency of the configuration by tuning the time-

driven parameters. We proceed with this step if the consid-

ered configuration has better energy consumption than the

current best solution. We iteratively decrease the time-driven

parameters until the deadline is met or the energy consumption
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becomes worse than the current solution.

The grid search is usually computationally feasible for apps

that have a few domains. This is possible because of the

simulator, which is invoked to evaluate the performance of

each configuration, is scalable as shown in Section IV-D.

In addition, the grid search can mostly evaluate multiple

configurations in parallel. We ensure that the updates of the

best solution are atomic. Nonetheless, a gradient descent based

search is more computationally efficient despite potentially

suboptimal solutions due to local minima. The gradient descent

search works by initially setting the data-driven parameters to

the smallest value. Then, we evaluate the impact of increasing

each parameter by a fixed amount. Note that these operations

can be done in parallel. Similar to the grid search method, we

attempt to reduce the latency of the considered configurations

if they exceed the deadline. In the next iteration, we select the

configuration that provides the best energy consumption and

meets the end-to-end deadline. The optimization stops when

the reduction in energy consumption falls below a threshold.

D. Prototype Implementation

We have developed a source-to-source compiler that trans-

forms a StreamIt program into an Android service that runs

in the background. The result of the compilation process is a

complete Android project. This project can be referenced from

Android apps that typically provide a user interface for con-

trolling the service. The compiler translates each component

type in a StreamIt program into a Java class. The compiler

also generates the code necessary for the Android service

implementation. This code implements the standard APIs for

Android services and manages the instantiation of the stream

program. Further, the service provides an additional interface

for loading PM policies and modifying their parameters. The

functionality common to Gratis apps is included in a runtime

library that provides support for managing sensors, network

communication, and the event system used for PM.

The compiler partitions the StreamIt program into domains.

The first step is to determine what resources are used by

each component. The compiler will generate an error if a

component uses more than one hardware resource. Next, the

partitioning process proceeds greedily. We create the initial

domain that includes the source of the stream program. The

immediate successors of the source are added to the domain

if they use the same hardware resources. Otherwise, a new

domain is created, and the process is started recursively with

the component requiring a different hardware resource as the

source of the new domain. Each domain will be executed as a

different thread and manages a power lock. The power lock is

acquired when the domain starts executing and released when

the domain completes its execution.

The exchange of data between components is managed

using FIFO queues. The compiler differentiates the exchange

of frames between components in the same domain and those

in different domains. Since components pertaining to the same

domain run in the same thread, their queues do not need

to be synchronized. In contrast, the data exchange between

domains must be synchronized. The compiler generates code

to instantiate the appropriate type of queues at run-time. The

size of the queue is configured using the app simulator to

determine the peak value observed during simulations. Note

that by pre-allocating memory for each queue, we avoid the

overhead of garbage collection that previous stream engines

have shown to be significant.

The execution of the domains is managed by a scheduler.

A nice property of the proposed coordination language is

that it associates event handlers with specific components and

queues. Accordingly, a queue maintains a set of guarded com-

mands that it needs to evaluate. The guarded commands are

evaluated when data is inserted into the queue which changes

the values num_input, num_output, input_slack, and

output_slack. When a guard is true, the scheduler gener-

ates a pre event before executing the domain, and a post
event after the execution completes [12], [13].

IV. EXPERIMENTS

The goal of this section is to evaluate the efficacy of the

proposed PM methodology for developing energy-efficient

MSAs. We are interested in answering the following questions:

• Can Gratis save significant energy using workload shap-

ing policies? If so, what optimizations are most effective?

• How accurate are the performance predictions?

• Can the parameters of Gratis PM policies be configured

effectively and efficiently?

A. Methodology

We have developed mobile apps that implement two com-

mon tasks in mobile sensing: tracking the user social inter-

actions using speaker identification techniques (SI app) and

recognizing the user physical activities from motion sensors

(AR app). We have evaluated the two apps using several work-

load shaping optimizations that combine batching, scheduled

concurrency, and adaptive sensing. Our experiments focus on

evaluating the performance of each app in isolation. This

decision is motivated by three factors: (1) Empirical studies

show that only a few apps typically run in the background

so there will be minimal interference with the app. (2) The

OS provides mechanisms such as cgroups to provide isolation

between groups of processes and control resource isolation.

Accordingly, it is reasonable to focus on the function of an

app in isolation. (3) The results from using a single app at a

time are realistic for mobile phones that run a small number

of MSAs in the background and for wearable and IoT devices

(e.g., smartwatches) that usually run one or a small number

of apps.

The SI app collects audio samples of type float at 44KHz.

The app is partitioned into four domains responsible for

reading audio frames, extracting audio features, uploading

them to a remote server, and displaying them. SI computes

fourteen Mel-frequency Cepstral Coefficients (MFCCs) [14]

from the collected frames. MFCCs have been extensively used

for speaker identification and speech recognition on mobile

phones [2], [15], [16]. The app may use either static or
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adaptive sensing. In the case of static sensing, SI works in

duty cycles by alternating between reading audio for a period

of P seconds and sleeping for 3P seconds. Adaptive sensing

is implemented using a voice activity detector to determine

whether a frame contains speech. The voice activity detector

is based on the algorithm proposed by Moattar et al. [17].

When no speech is detected, the app stops sampling for 11.1

seconds. Otherwise, the app continues collecting audio data.

The AR app collects samples from the accelerometer at

225Hz that are aggregated into frames of size 128. Similar

to the SI app, the AR app is partitioned into four domains

responsible for collecting acceleration readings, extracting

features, uploading to the server, and displaying the features.

The app extracts the energy and the entropy for each axis

of the accelerometer. We have evaluated the app using both

continuous and adaptive sensing. Adaptive sensing is imple-

mented by determining whether the collected frames include

any motion. If no motion is detected, the app stops collecting

samples for 18 seconds.

The SI and AR apps may be configured to run in real-

time or use a previously recorded trace file. We use the latter

capability for the adaptive sensing experiments to evaluate

the performance of PM policies in a consistent manner. The

performance of the SI file was evaluated using several long

audio recordings. The audio was collected in the homes

of older adults as part of a previous study. Similarly, the

performance of AR is evaluated using long acceleration traces.

The traces were obtained from a publicly available dataset.

The experiments were performed on Nexus 6 mobile phone

running Android 5.0.2. The phone used Wi-Fi to connect to an

access point located in the same room. The SI and AR apps

have been tested using several PM policies configured with

different parameters. Each experiment took five minutes during

which we measured the processing latency and the energy

consumption. The processing latency was measured directly by

the application calling the standard Java API nanoTime().

Power consumption was measured using an external power

meter from Monsoon Solutions [18]. The energy consump-

tion was calculated by summing up the instantaneous power

measurements. Based on the computed energy consumption,

we estimate the battery life of the phone when assuming a

capacity of 3000 mAh.

B. Gratis Extends Battery Life

In this section, we evaluate the ability of Gratis to save

energy using different PM policies. We start by considering

energy optimizations that combine batching (B) and scheduled

concurrency (C) without adaptive sensing. We generated sev-

eral PM policies that we instantiated with different parameter

values. The policy FB + FC uses fixed batching and fixed

concurrency. Fixed batching indicates that the domains process

data beyond minimum thresholds. This baseline represents the

energy consumption of a stream program that is executed

without any energy optimizations. Fixed concurrency indicates

that the domains execute one after another as soon as possible

without seeking to overlap hardware access.

(a) SI: Energy-delay trade-off (b) SI: Impact of policy policies

(c) AR: Energy-delay trade-off (d) AR: Impact of policy policies

Fig. 6. The energy-delay trade-off for SI and AR when using static sensing.
Batching significantly improves energy efficiency. Combining batching with
scheduled concurrency provides little additional improvement.

This baseline shows the performance a naive execution of

a stream program would have. The policy VB + FC uses

batching but fixes concurrency as described above. We have

evaluated the policy by configuring each domain with the

following batch sizes: 1, 16, 32, 256, 512, 1024, and 2048. The

line VB + VC includes the results from multiple policies that

use batching and controlled scheduling. Some of the policies

overlap sensing with feature extraction or feature extraction

with network upload. We use a total of 8 policies with different

scheduled concurrency settings.

Figures 6a and 6c show the energy-delay trade-off when

SI and AR use static sensing. The figures show that significant

energy savings can be achieved by controlling the energy-delay

trade-off in an MSA. For example, the SI app can run for 7

hours when data is processed as soon as possible by setting the

end-to-end deadline to zero. In contrast, when the end-to-end

deadline is increased to 60 seconds, the battery life is extended

to almost 19 hours, a 2.7 times improvement in battery life.

The AR app is less energy intensive. The phone can run AR
for 20 hours when the end-to-end deadline is zero. Setting the

deadline to 60 seconds extends the battery life to 27 hours,

which is a 1.35 times improvement. Part of the reason for the

better battery life of the AR app is that the Nexus 6 includes

a specialized co-processor for motion sensing. However, even

with the use of specialized hardware, there is still a benefit

of using workload shaping optimizations. The energy-delay

trade-off shows that increasing the deadline yields diminishing

energy savings. In our apps, most of the energy savings can

be obtained if the user is willing to tolerate a delay of about

10 seconds.

Figures 6b and 6d plot the best configurations for the

three classes of policies that we consider for SI and AR
respectively. We plot both the performance measured directly

and the performance estimated using the app simulator. The

figures indicate that the policies that incorporate batching
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provide significant energy savings over the baseline. To our

surprise, including scheduled concurrency did not provide

significant energy savings over the best batching policy. Sched-

uled concurrency provides no additional improvement for SI.

However, the best policy for AR is the one that overlaps

the execution of the audio and feature_extraction
components concurrently with the upload component. This

policy extends the battery life by an additional 13.2 minutes

over Best(VB+FC) (note that this is not visible in the figure

due the magnitude of the y-axis). The figures show that the

app simulator predicts the energy consumed by both apps

with reasonable accuracy. We will analyze the accuracy of

the simulator in more details in the next subsection.

An effective approach to saving energy is to reduce the

workload of the system by introducing adaptive sensing. We

have integrated adaptive sensing in the previously generated

policies. The policies were generated using end-to-end dead-

lines of 10, 20, and 60 seconds respectively. The adaptive

sensing policies use timeout handlers to trigger the domain

executions once the slack falls below a threshold. The slack

thresholds were configured by the policy configuration tool.

Figures 7a and 7c show the energy-delay trade-off when

adaptive sensing is used. For comparison, we include the static

sensing data from the previous experiment. In contrast to the

static sensing case, most of the configurations are concentrated

around the deadline given sufficient batching. This is because

of the timeout handler that triggers the execution of compo-

nents when the slack of the frames in their queues falls below a

threshold. It is easy to see that adaptive sensing significantly

increases the battery life of the phone. This is because the

apps intelligently determine when it is necessary to remain

awake. Adaptive sensing is effective in extending the battery

life by 7 and 3 times for SI and AR respectively. Figures 8d

and 7d plot the best configurations for the three classes of

policies that we previously defined when adaptive sensing is

used. As in the static sensing case, we observe that batching

significantly increases the battery life of the app. However,

policies with different scheduled concurrency may provide

some additional energy savings for adaptive sensing. When SI
has a deadline of 10 seconds, batching increases the lifetime

from 29 to 41 hours. Similar differences can be observed

for the other deadlines. If the user is willing to increase

the end-to-end deadline from 10 to 60 seconds, the phone’s

battery life may be extended by 4 more hours with combined

scheduled concurrency. Note for SI with a deadline of 20

seconds, incorporating scheduled concurrency can extend the

battery life by additional 8 hours over the best batching. AR
has a similar behavior to SI with a smaller improvement of

scheduled concurrency that extends the battery life by 2 hours

given a deadline of 20 seconds.

C. Gratis Apps Have Composable Performance

We have evaluated the accuracy of the app simulator by

comparing the difference between the predicted and measured

performance. Figure 8 plots the accuracy of the predictions

for the considered apps. Overall, the average error for energy

(a) SI: Energy-delay trade-off (b) SI: Impact of policy policies

(c) AR: Energy-delay trade-off (d) AR: Impact of policy policies

Fig. 7. The energy-delay trade-off for SI and AR when using adaptive
sensing. Adaptive sensing significantly reduces energy consumption relative
to static sensing. Batching significantly improves energy savings.

predictions is 7%. The error for latency is 15% on average.

We have tracked the main source of the inaccuracies to be the

Android system alarm wake-up delay which could delay the

delivery of events by as much as 2 seconds. The SI latency

error is larger in the cases of static sensing and adaptive

sensing with a short deadline because the measured end-to-

end delays are small such that a small variation could lead

to large errors in percentage. Hence, this shows that our

assumption that the performance of Gratis apps is composable

is reasonable.

We remark that the overall performance accuracy is slightly

better in the static sensing case than adaptive sensing. This

is not surprising since in the adaptive case, we also have to

cope with variations in user input. Perhaps more interestingly,

there is a significant dependency between the errors and the

deadlines when adaptive sensing is used. The reason for this is

because when deadlines are tight, the fraction of the time that

contributes to the end-to-end latency is dominated by the time

required to execute the domains. As the deadline is increased,

the time that we artificially inject for workload shaping starts

dominating the end-to-end latency. Therefore, it is easier to

estimate the delays that we introduced than predicting the

domain execution time based on average performance profiles.

D. Gratis App Simulator is Scalable

A key ingredient to the effectiveness of the policy configu-

ration tool is the scalability of the simulator. The simulator is

invoked to evaluate the performance of each policy. The most

demanding use of the simulator is to simulate a policy that

employs adaptive sensing. Figure 9 plots how the simulation

time increases with the length of the trace used by the

simulator. The performance of the simulator mainly depends

on the batching parameters used by the policy. The figure plots

the best-case and the worst-case simulation time for a given
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(a) SI: Energy prediction errors (b) SI: Latency prediction errors

(c) AR: Energy prediction errors (d) AR: Latency prediction errors

Fig. 8. Accuracy of energy and delay predictions for the app simulator

App Search Method Best(VB + FC) Best(VB + VC)
SI Grid 14717 μAh / 254 s 14717 μAh / 7166 s

Gradient 14952 μAh / 56 s 14952 μAh / 66 s

AR Grid 220 mAh / 183 s 220 mAh / 2022 s
Gradient 221 mAh / 78 s 221 mAh / 88 s

trace length. The simulator can process traces that are several

hours long in a few seconds.

Table IV-D shows the results of configuring the PM policies

for SI and AR using adaptive sensing, batching, and controlled

scheduling. The configuration tool used traces of 10 minutes

and 5 hours for SI and AR, respectively. We report both the

energy consumption and the total simulation time using the

grid search and the gradient descent method. Configuring all

the policies with varying batching and scheduled concurrency

for SI requires nearly 2 hours when the grid search is used.

This time is reduced to 1 minute or so by using the gradient

descent method with merely 1.6% more energy consumption

of the best PM policy. Similarly, configuring the policies for

AR requires 33.7 minutes when using the grid search. This

time is reduced to 1.47 minutes by using the gradient descent

search with less than 1% energy consumption difference from

the identified best PM policy. These results show that it is

computationally feasible to configure PM policies automati-

cally and that the gradient descent search method provides an

effective approach to reducing configuration time.

V. RELATED WORK

Researchers have developed a wide range of techniques for

managing the trade-off between energy consumption and per-

formance. These methods reduce the energy consumption of a

sensing task by optimizing the subset of sensors that are used,

the time when they are sampled, and the algorithms used to

make inferences. For example, Kobe constructs offline efficient

sensing pipelines by optimizing the features and classifiers

(a) Energy Prediction Errors (b) Latency Prediction Errors

Fig. 9. Simulation time for simulating SI and AR with adaptive sensing.

that are used [19]. Similarly, Orchestrator constructs multi-

ple variants of a sensing pipeline and dynamically switches

between these variants at run-time [20]. ACE saves energy

by caching inference results across apps and by substituting

the use of power-hungry sensors (e.g., GPS) with that of

lower-power sensors (e.g., motion sensors) whenever possible

[21]. In this paper, we focus on a broad class of PM policies

that control the time when operations are performed subject

to soft end-to-end deadlines. Our techniques save energy by

shaping the workload so that it can be processed in a more

energy-efficient manner without sacrificing sensing accuracy.

The unique aspect of our work is the ability to estimate the

impact of a PM policy on the energy and delay of an app at

compile time.

Our solution leverages the use of high-level abstractions

for writing energy-efficient programs. Several recent works

have considered this approach. EnergyTypes allows developers

to specify phased behavior and energy-dependent modes of

operations in their application using a type system to dynam-

ically adjust the CPU frequency and application fidelity at

run-time to save energy [22]. EnerJ employs a type system

for a developer to specify which data flows in their apps can

be approximated to save energy and guarantees isolation of

precise and approximate components [23]. Closer to our work,

Tempus uses annotations that control when power-hungry

operations are invoked [4]. A limitation of these approaches is

the required deep understanding of power management, oper-

ating systems, and programming languages. More importantly,

restructuring an app has an unpredictable impact on its energy

consumption and delay. As a result, the developer must re-

profile the app even when making minor changes.

The closest related works are the systems that use stream

programs as a representation for mobile apps. Green Streams

[5] and StreaMorph [24] focus dynamic voltage and frequency

scaling (DVFS). Both papers recognize that executing streams

as soon as possible results in energy inefficiencies. Green

Streams addresses this problem by ensuring that components

are executed at the same rate. StreaMorph further reduces

energy consumption by compiling multiple versions of a

stream program and switching between them at run-time.

Unfortunately, applying DVFS for MSAs is usually ineffective

because each invocation of an MSA component produces only

a small amount of data that cannot be processed efficiently.

Gratis provides a flexible and general mechanism for speci-
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fying a wider range of PM policies that coordinate multiple

hardware resources. Energy savings are the result of creating

batches of data that can be processed in an energy-efficient

manner. SymPhoney [3] is a stream execution engine that

focuses on handling overload conditions due to interfering

applications. In contrast, Gratis focuses on the more common

situation when an app executes with minimal interference as a

background service. Moreover, Gratis provides two additional

improvements. (1) Gratis uses a simulation-based technique to

determine the energy and delay of a PM policy in a computa-

tionally efficient manner. (2) Building on this property, Gratis

optimizes the parameters of a PM policy to reduce energy

consumption further.

VI. CONCLUSIONS

Gratis is a novel paradigm for incorporating workload

shaping energy optimizations with predictable performance

of MSAs. We presented an innovative programming model

that combines stream graphs for specifying the functional

aspects of an app and PM policies for controlling their run-

time execution. We provide a coordination language that can

express a broad range of workload shaping energy optimiza-

tions including those for batching, scheduled concurrency, and

adaptive sensing. Gratis simplifies the introduction of PM

policies by allowing developers to cleanly separate the func-

tional aspects of an MSA from its power management. The

developed programming abstraction also supports evaluating

the performance of concrete policies at compile time and

automatically configuring parametric policies. The key to these

capabilities is an accurate and scalable simulator that is based

on the observation that MSAs have composable performance.

We demonstrated that our approach is both flexible and

expressive by incorporating workload shaping optimizations

in two realistic apps. Our experimental results show that

workload shaping optimizations can save significant energy

consumption. For example, the SI app with static sensing

can run for only 7 hours when data is processed as soon as

possible. The battery life can be extended to almost 19 hours

when the deadline is relaxed to one minute. The improvement

is the result of applying batching and scheduled concurrency

optimizations. Additional energy savings may be achieved by

using adaptive sensing with combined scheduled concurrency

to extend the battery life to 45 hours or more. The performance

improvement for AR is equally impressive. AR can operate

for 20 hours without optimizations. The use of batching

and scheduled concurrency increases the battery life to 27

hours and even 60 hours with adaptive sensing. It is worth

noting that the energy savings come with minimal cost to the

developer. We have extensively evaluated the performance of

our simulator. The simulator can predict the energy and delay

with average errors of 7% and 15% respectively even when

applications have variable workloads. The simulator is scalable

simulating hours of traces in a few minutes. These results

demonstrate that it is feasible to estimate the performance

of MSA at compile time accurately and are the basis for

efficiently configuring PM policies.
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